

Update on Wind-Diesel prospects in Nunavik

M-F Roussy, eng., planning div. Dir. Rég. - Réseaux autonomes, HQ-Réseau

A. Forcione, B. Saulnier, res. Scientists
Division Technologie et Développement
Industriel – IREQ

roussy.marie-france@hydro.qc.ca forcione.alain@ireq.ca saulnier.bernard@ireq.ca

September 28- October 2nd, 2004 Ayeska Resort, Alaska

Update on Wind-Diesel prospects in Nunavik

- 1. Rationale and background of HQ Wind-diesel activities (1985-2004)
- 2. Feasibility study
 (Avant-projet) for a
 first Nunavik project

Showcase for HQ & Partners RFPs: Wind resource, construction Performance tracking

Technico-economic Summary

- It works
- It makes economic sense
- Ongoing (2004):
 Feasibility of first implementation in a Nunavik village
- Partnership project

Wind-Diesel rationale for Nunavik

HQ Objective:

 Reduce HQ annual operating deficit in Remote communities grid by implementing high penetration wind diesel technology in a first Nunavik village

Some statistics

- Nunavik vs all of remote grids served by HQ
 - 45,1 of total annual purchases of fuel
 - 16,4 % of total annual sales of electricity
- Fuel represents 53,8% of the operating cost in Nunavik (~ 9,5 M\$ in 2004)
- High-penetration Wind-Diesel technology could result in a ~ 50% decrease in the annual fuel purchases for all the inuit villages.

Production costs (charges), Nunavik (\$1997)

The High Penetration No-Storage Wind Diesel Concept

Priority to Wind Energy
Optimal Penetration Dictated by Economics: Cost of Fuel, Wind Resource

- Diesels Are Shut When Wind Exceeds Demand
- Energy Surplus Used in Secondary Loads (added value)

No Power Quality Reduction

A **Frequency Regulator** Maintains Balance Between Generation and Load

A **PLC Manages the Transitions**Between the Operating Modes: All-Diesel, All-Wind and Wind-Diesel

Savings

Fuel: 40% and more depending on wind resource quality
Increased Diesel Life
Diesel Maintenance

Additional Costs

Wind Turbine maintenance

A

High-penetration No-Storage WindDiesel (HPNSWD) - Milestones

- 1990: Modeling/experimental Validation
 - IREQ (partner NRCan)
- 1994: Demonstration
 - Atlantic Wind Test Site (partner NRCan)
- 1994-6 HQ Working group
 - Cost effectiveness (pre-feasibility) in 8 of the 14 Nunavik communities
 - Implementation Recommendation aborted
 - Quaqtaq economic feasibility study
- 1998 First commercial implementation St-Paul island, Alaska
- Contractor: <u>Northern Power Systems, Vt,</u> USA
- Technology & Consultant: <u>Hydro-Québec</u> (IREQ)

St. Paul Island, Alaska

RÉSEAUX AUTONOMES

St. Paul, Alaska

Frequency regulator

Secondary loads (Surplus energy)

Lessons learned from St-Paul Island, Alaska

- Turnkey construction is currently available
 - Full system (diesel & wind) appears cost effective
 - Commercial projet carried out by Northern Power Systems, Vt
 - Reliable contractors exist
- Technology and know-how: IREQ
 - Demonstrated cost-effectiveness (St-Paul, Alaska):
 - COE from 34 to 21 ¢US/kWh (new wind-diesel power station)
- In 2001: Decision to update 1996 & 1998 economic studies for Quaqtaq

Economic Studies Update (Quaqtaq)

2001- Northern Power Systems:

Northern Power Systems, « Wind-Diesel Hybrid System for Quaqtaq, feasibility study, final report », august 2001

Réf: Saulnier, B. « Analyse et Recommandations découlant de l'actualisation 2001 des coûts de réalisation d'un système JEDHPSS clef en main au village de Quaqtaq, Ungava », Août 2001

Valuable features in upcoming projects

- Wind technology performance and reliability (continuous decrease in COE, ¢/kWh)
- Fuel cost will grow (deficit growth)
- Cost of capital is kept low
- Experienced contractors

Need for an economic update for Nunavik 2002-3

- 2002- Reassess the NPV produced by HQ working group (1994-96) using most recent available data.
 - <u>Identify the most interesting Nunavik village</u> for a first implementation of WD coupling.
 - Identify third-party integrator capable of completing a turnkey installation.
 - Partnerss: HQ-Remote grids, local authorities, constructor,
 project management, IREQ, financial partners
- Requirements and Constraints:
 - Community: Fuel supply through Shell vs Coop, Wind Turbine manufacturer (reliability and cost), Turnkey feasibility, Partnership /Technology Transfer, Project setup and organizational structure, Outside market
 - Operational requirements and constraints
 - Overall reliability (ex: harsh environment, cold, etc)

HPNSWD – Economic optimization

Parameters for each village

- Hourly demand of a whole year
- Diesel fuel consumption curve
- Fuel and maintenance costs
 - + load growth forecasts
- Hourly winds at the wind power plant
- Commercial WT Costs
- Project life: 20 years
- Turnkey construction project
- Economic parameters (HQ-Réseaux)
 - Inflation
 - Real Discount rate
 - Project duration: 20 years
- Operational strategies parameters
 - Minimum diesel loading
 - Reserve criteria (high penetration)

Overall Results - Nunavik

Ranking by maximum NPV for each village reference WD configuration

Sensitivity Study - Inukjuak

Project Feasibility Timetable

<u>Internal cost effectiveness of HPWD in 7 villages</u> <u>Inukjuak: Investment cost 9,28 M\$; NPV 1,28 M\$; IRR 7,0%</u>

Technological maturity & reliability

Turnkey construction following an RFP process

Project is under stewardship of Dir. Rég. - Réseaux autonomes

Phase A: On site wind resource monitoring (input to construction RFP) and RFP performance based write-up. Jan 2004 - Sept 2005

Phase B: RFP: turnkey construction and commissionning (2005-2006)

Phase C: Performance evaluation ; Technology Transfer

Partnership/Stakeholders involvement

- HQ Remote grids / HQ-Distribution (owner and operator)
- Nunavik and local Authorities
- Third party contractors (WT mfg, system integrator, construction, performance monitoring)
- Federal partners : RNCan, INAC,
 - TEAM & WPPI programs
 - Innovative Technology Replicability
- IREQ (system specifications, performance track record)

A

Project Strengths

Favourable factors:

WT: Proven commercial products

- ✓ Industry workhorse
- ✓ Performance and reliability track record in northern climates

Feasibility of commercial operation demonstrated

- ✓ Alaska: St-Paul Island, Kotzebue, Selawik
- ✓ Antarctica: Mawson

Experienced commercial system integrators:

> NPS, Power Corp, Frontier energy Inc., DanWind, DanVest,

Added value for HQ & partners:

Recognized world leadership in HPNSWD technology

Technology showcase: National & international market (via E7)

HQ- Remote grids Project planner: roussy.marie-france@hydro.qc.ca

HQ- IREQ Technology support:

forcione.alain@ireq.ca
saulnier.bernard@ireq.ca

